Calculus
$$\begin{aligned}
e^{x}&=\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}=1+x+\frac{1}{2 !} x^{2}+\cdots, x\in(-\infty,+\infty) \\
\sin x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}+\cdots, x \in(-\infty,+\infty) \\
\cos x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}+\cdots, x \in(-\infty,+\infty) \\
\ln (1+x)&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots, x \in(-1,1] \\
\frac{1}{1-x}&=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, x \in(-1,1) \\
\frac{1}{1+x}&=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, x \in(-1,1) \\
(1+x)^{\alpha}&=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots, x \in(-1,1) \\
\arctan x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+ x \in[-1,1] \\
\arcsin x&=\sum_{n=0}^{\infty} \frac{(2 n) !}{4^{n}(n !)^{2}(2 n+1)} x^{2n+1}=x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{5}{112} x^{7}+\frac{35}{1152} x^{9}+\cdots+, x \in(-1,1) \\
\tan x&=\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n) !} x^{2 n-1}=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\cdots,x\in (-\frac{\pi}{2},\frac{\pi}{2})
\end{aligned}$$